QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)
|
|
- Ἀντιόπη Αρβανίτης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων α.κ.υ. µε τον συνηθισµένο τρόπο άθροισης (από αριστερά προς δεξιά) των γινοµένων των αντίστοιχων στοιχείων των διανυσµάτων είναι πίσω ευσταθής. ΒΙΒΛΙΟ 2. Σωστό ή Λάθος : Αν το µητρώο A R n n είναι τριδιαγώνιο και αντιστρέψιµο τότε πάντα ισχύει ότι η παραγοντοποίηση µε LU µε µερική οδήγηση (π.χ. το αποτέλεσµα της εντολής MATLAB [L,U] = lu(a)), υπολογίζει ένα κάτω διδιαγώνιο µητρώο L µε µονάδες στη διαγώνιο και ένα άνω διδιαγώνιο µητρώο τέτοια ώστε A = LU. ΛΑΘΟΣ : Γνωρίζουµε ότι αν ένα µητρώο είναι αντιστρέψιµο τότε υπάρχουν µητρώα L, U κάτω και άνω τριγωνικά αντίστοιχα και µε το L µε µονάδες στη διαγώνιο, και µητρώο µετάθεσης P τέτοια ώστε PA = LU. Αν το A είναι τριδιαγώνιο τότε η παραπάνω κλήση στη MATLAB έχει ως αποτέλεσµα ένα άνω τριγωνικό U και ένα µητρώο που ενσω- µατώνει την πληροφορία που περιέχουν το P και το L (δηλ. P L που η MATLAB καλεί «ψυχολογικά κάτω τριγωνικό» ). Ενα ακραίο (κλασικό) παράδειγµα είναι το A = [0, 1; 1, 0] για το οποίο η lu επιστρέφει U = I αλλά L = A που προφανώς δεν είναι κάτω τριγωνικό. 3. Αν ένα µητρώο έχει δείκτη κατάστασης 10 6 και η υπολογισµένη λύση σε σύστηµα α.κ.υ. IEEE διπλής ακρίβειας (µονάδα στρογγύλευσης u ) του συστήµατος Ax = b µε QR είναι ˆx τότε x ˆx x 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). Χονδρικά το εµπρός σφάλµα ϕράσσεται από πάνω από το δείκτη κατάστασης του προβλήµατος επί το πίσω σφάλµα. Η QR είναι πίσω ευσταθής εποµένως το πίσω σφάλµα είναι O(u). Άρα µπορούµε να πούµε ότι το εµπρός σφάλµα ϕράσσεται εκ των άνω από εποµένως ρ = 10. ΕΠΙΣΗΣ (για άλλες εκδοχές): Αντίστοιχα αποτελέσµατα έχουµε αν το µητρώο επιδέχεται την εφαρµογή αλγορίθµων που είναι πίσω ευσταθείς, π.χ. συστήµατα µε ΣΘΟ µητρώα µέσω της Cholesky. 4. Για ένα πολυώνυµο p µιας µεταβλητής x δίνονται οι συντελεστές της δυναµοµορφής του, a = [a(1); a(2);...; a(n + 1)], και όπως συνηθίζεται στη MATLAB, a(1) είναι ο συντελεστής της µεγαλύτερης δύναµης (n-οστής),... και a(n + 1) ο τελευταίος όρος (συντελεστής του x 0 = 1). ίνονται επίσης και m τιµές της µεταβλητής σε διάνυσµα X = [x(1);x(2);...; x(m)]. α) Να εκφράσετε τον υπολογισµό των τιµών {p(x(1)),..., p(x(m))} χρησιµοποιώντας µια πράξη πολλαπλασιασµού µητρώου µε διάνυσµα και τις απαραίτητες αρχικοποιήσεις για το µητρώο και το διάνυσµα. Καλύτερες απαντήσεις ϑα κρίνονται εκείνες που είναι άµεσα εκτελέσιµες σε MATLAB και που αποφεύγουν τη χρήση διπλά εµφωλευµένου ϐρόχου χρησιµοποιώντας τις κατάλληλες εκφράσεις. ϐ) Για ποιό λόγο, όταν το n είναι µεγάλο, αυτή η µέθοδος υπολογισµού είναι ανεπιθύµητη. (α) Ενας τρόπος είναι να εκφράσουµε τον υπολογισµό P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) όπου P είναι η στήλη των p(x(1 : n)). π.χ. µε το ϐρόχο
2 V = []; for j = 0 : n V = [V, X. j]; P = V a(n + 1 : 1 : 1); (ϐ) Γιατί ϐασίζονται σε µητρώα Vandermonde που έχουν πολύ µεγάλο δείκτη κατάστασης ως προς τον πολλαπλασιασµό και άρα µπορεί να έχουµε µεγάλη µεγέθυνση των σφαλµάτων. Σωστό ή Λάθος : Αν το µητρώο A είναι συµµετρικό ϑετικά ορισµένο και τριδιαγώνιο τότε πάντα ισχύει ότι η παραγοντοποίηση µε LU µε µερική οδήγηση (π.χ. το αποτέλεσµα της εντολής MATLAB [L, U] = lu(a)), υπολογίζει ένα κάτω διδιαγώνιο µητρώο L µε µονάδες στη διαγώνιο και ένα άνω διδιαγώνιο µητρώο τέτοια ώστε A = LU. ΣΩΣΤΟ : Το µητρώο είναι ΣΘΟ εποµένως δεν χρειάζεται οδήγηση (αν γίνει µε- ϱική οδήγηση, οι οδηγοί είναι πάντα τα διαγώνια στοιχεία). Σε κάθε ϐήµα, j = 1,..., n 1, για την απαλοιφή του µοναδικού µη µηδενικού υποδιαγώνιου στοιχείου, χρησιµοποιούµε τη γραµµή µε µη µηδενικά στοιχεία στις ϑέσεις (j, j), (j, j + 1) εποµένως αυτό έχει ως αποτέλεσµα το µηδενισµό του στοιχείου στη ϑέση (j + 1, j) και την αλλαγή του στοιχείου στη ϑέση (j + 1, j + 1). Τα υπόλοιπα στοιχεία παραµένουν άθικτα. Εποµένως το U είναι διδιαγώνιο (περιέχει στη διαγώνιο τους οδηγούς και στην υπερδιαγώνιο την υπερδιαγώνιο του A ενώ όλα τα άλλα στοιχεία είναι 0.) Για το L προσέξτε ότι σε κάθε ϐήµα εφαρµόζουµε το στοιχειώδες µητρώο Gauss L j = I u j e 1 όπου u j είναι διάνυσµα µε µοναδικό µη µηδενικό στοιχείο στη ϑέση j + 1 λόγω της τριδιαγώνιας µορφής του A και e j το j διάνυσµα της τυπικής ϐάσης. Τότε το L ϑα είναι I +u 1 e 1 + u n 1e n 1 που είναι κάτω διδιαγώνιο. Σωστό ή Λάθος : Αν το µητρώο A R n n είναι κάτω τριγωνικό µε µονάδες στη διαγώνιο τότε πάντα ισχύει ότι η παραγοντοποίηση µε LU µε µερική οδήγηση (π.χ. το αποτέλεσµα της εντολής MATLAB [L,U] = lu(a)) επιστρέφει ως L το A και ως U το ταυτοτικό µητρώο της κατάλληλης διάστασης. Γενικά ΛΑΘΟΣ γιατί µε τη µερική οδήγηση, µπορεί να µην προκύψει κάτω τριγωνικό µητρώο. Για παράδειγµα A = [1, 0; 2, 1] στη MATLAB επιστρέφει L = [1/2, 1; 1, 0]. Θα ίσχυε αν η απόλυτη τιµή κάθε στοιχείου του A εκτός διαγωνίου ήταν µικρότερο του 1. Σωστό ή Λάθος : Αν το µητρώο A R n n είναι άνω τριγωνικό χωρίς µηδενικά στη διαγώνιο τότε πάντα ισχύει ότι η παραγοντοποίηση µε LU µε µερική οδήγηση (π.χ. το αποτέλεσµα της εντολής MATLAB [L, U] = lu(a)) υπολογίζει ως L = I (ταυτοτικό) και ως U = A. ΣΩΣΤΟ : Κατά τη διάρκεια της οδήγησης τα διαγώνια στοιχεία είναι πάντα µεγαλύτερα του 0 εποµένως οι οδηγοί είναι πάντα τα διαγώνια στοιχεία. Επιπλέον δεν χρειάζεται να γίνει απαλοιφή των κάτω τριγωνικών στοιχείων καθώς είναι όλα 0. Εποµένως η παραγοντοποίηση LU συνίσταται απλά στο A = I A. Υπενθυµίζουµε ότι στη MATLAB, οι µεταβλητές realmax, realmin, eps περιέχουν αντίστοιχα το µέγιστο και ελάχιστο κανονικοποιηµένο α.κ.υ. και το έψιλον της µηχανής. Τι επιστρέφουν οι παρακάτω εκφράσεις: i) 1+ eps/2 + eps 2/2 == 1. ii) realmin/0. iii) realmin/2 == 0. iv) realmax+realmax/2. v) 0/0. 2
3 2ο ΘΕΜΑ Εστω A R n n, και τα τυχαία (µη µηδενικά) διανύσµατα (στήλες) p, x i R n για i = 1,..., s και ο υπολογισµός y i = p + Ax i ; 1. Να ϐρείτε τον ελάχιστο αριθµό µεταφορών ανά πράξη α.κ.υ. για τον υπολογισµό ως έχει χρησιµοποιώντας το γνωστό (από το ϐιβλίο) απλό υπολογιστικό µοντέλο. 2. Να τροποποιήσετε τον παραπάνω κώδικα και να τον εκφράσετε σαν µια πράξη BLAS 3 και ό,τι επιπλέον αρχικοποιήσεις χρειάζονται. 1. Υπολογίζουµε τα Ω, Φ min για να ϐρούµε το Ϲητούµενο µ min = Φ min /Ω. Εχουµε Φ min = n 2 + n + 2ns και Ω = 2n 2 s άρα µ min = n2 + n + 2ns 2n 2 s Προσοχή: Τα p, A µεταφέρονται µόνο µια ϕορά! = 1 2s + 1 n + 1 2ns 2. Προφανώς, τα Y = [y 1,..., y s ], X = [x 1,..., x s ] είναι n s. Αν P = [p,..., p] είναι n s τότε Y = P + AX δηλαδή πράξη BLAS 3. Αρχικοποιούµε δηλαδή τα Y, X µε τις στήλες y i, x i ενώ το P = pe όπου e R s είναι περιέχει µόνο µονάδες. Εστω πυκνό αντιστρέψιµο A R n n, και τα τυχαία (µη µηδενικά) διανύσµατα (στήλες) x i, z i R n για i = 1,..., s και ο υπολογισµός z i = z i + A\x i ; όπου ο τελεστής «\» ενεργεί όπως και στη MATLAB. 1. Να εξηγήσετε γιατί το κυρίαρχο κόστος του είναι O(sn 3 ) και να υπολογίσετε τον ελάχιστον αριθµό µεταφορών στο γνωστό (από το ϐιβλίο) απλό υπολογιστικό µοντέλο. 2. Να τροποποιήσετε τον κώδικα έτσι ώστε τα ίδια αποτελέσµατα να υπολογίζονται µε κυρίαρχο κόστος O(n 3 ) (δηλ. χωρίς τον παράγοντα s). 1. Το \ συµβολίζει επίλυση συστήµατος στη MATLAB (ευρέως γνωστό από την πρώτη άσκηση). Η επίλυση γενικού συστήµατος n n χρειάζεται Ω = 2/3n 3 + O(n 2 ). Εποµένως, η κυρίαρχη πολυπλοκότητα στο ϐρόχο είναι οι s λύσεις µε το A, εποµένως O(sn 3 ). Επίσης Φ min = n 2 + 3ns Προσοχή: Το A µεταφέρεται µόνο µια ϕορά! 2. Παρατηρούµε ότι χρησιµοποιούµε το ίδιο µητρώο A κάθε ϕορά. Εποµένως µπορούµε να εφαρµόσουµε LU µόνο µια ϕορά εκτός του ϐρόχου και να χρησιµοποιήσουµε τα προκύπτοντα L, U στίς λύσεις, π.χ. [L, U] = lu(a); z i = z i + U\(L\x i ); Το κόστος εκτός ϐρόχου είναι 2/3n 3 +O(n 2 ) ενώ εντός ϐρόχου O(sn 2 ) εποµένως συνολικά έχουµε κυρίαρχο κόστος O(n 3 ) (υποθέτουµε ότι s n.) 3
4 Εστω τα s µητρώα A i R n n, i = 1,..., s, το µη µηδενικό διάνυσµα p και ο υπολογισµός (I είναι ταυτοτικό µητρώο) B = I; ; B = A i B; ; y = B p; 1. Ο αριθµός πράξεων α.κ.υ. (δηλ. το Ω στο γνωστό - από το ϐιβλίο - υπολογιστικό µοντέλο) είναι O(sn 3 ). Να ϐρείτε τον ακριβή τύπο για το Ω και να αναφέρετε την κατηγορία BLAS των παραπάνω πράξεων. 2. Να τροποποιήσετε τον παραπάνω κώδικα έτσι ώστε το συνολικό κόστος να είναι O(sn 2 ), να υπολογίσετε το ακριβές Ω. 1. Οπως το γράψαµε πρόκειται για s πολλαπλασιασµούς µητρώων (BLAS 3) και στη συνέχεια πολλαπλασιασµός του γινοµένου µητρώου µε το διάνυσµα p (BLAS 2). Το κόστος κάθε πολλαπλασιασµού µητρώων είναι n 2 (2n 1) εποµένως συνολικά ϑα έχουµε (s 1)n 2 (2n 1) ή sn 2 (2n 1) (το δεύτερο ισχύει αν δεν λάβουµε υπόψη ότι δεν χρειάζεται ο πρώτος πολλαπλασιασµός µε το ταυτοτικό, δηλ. το A 1 I). Ο πολλαπλασιασµός του γινοµένου µε το διάνυσµα προσθέτει n(2n 1) επιπλέον πράξεις. Εποµένως Ω = (s δ)n 2 (2n 1) + n(2n 1) = n(2n 1)((s δ)n + 1) όπου δ = 0 ή Καλύτερος τρόπος υπολογισµού είναι y = A s (A s 1 ( (A 1 p) ) δηλαδή µε τον κώδικα y = p; ; y = A i y; Εδώ Ω = sn(2n 1). 3ο ΘΕΜΑ Εστω η συνάρτηση u : R R που ικανοποιεί τη διαφορική εξίσωση d2 u dx 2(x) + (µ + 2)xu(x) = x2, για κάθε x [0, 1], µε συνοριακές συνθήκες u(0) = 1, u(1) = Να διακριτοποιήσετε το πρόβληµα χρησιµοποιώντας πλέγµα n = 4 ισαπεχόντων εσωτερικών σηµείων και κεντρισµένες πεπερασµένες διαφορές 2ης τάξης και να γράψετε το αλγεβρικό σύστηµα που προκύπτει ως Ab = c. Πρέπει να γράψετε ακριβώς τις αριθµητικές τιµές των στοιχείων των A, c. Θέτουµε h = 1/(n + 1) = 1/ και διακριτοποιούµε χρησιµοποιώντας πλέγµα µε κόµβους 0, 1/, 2/, 3/, 4/, 1, το διάνυσµα U = [U 1, U 2, U 3, U 4 ] όπου U j ϑα χρησιµοποιηθεί ως προσέγγιση του u(x j ). Χρησιµοποιούµε τους γνωστούς τύπους για την προσέγγιση των παραγώνγων, στην περίπτωσή µας u (x j ) U j+1 2U j + U j 1 h 2 4
5 και αντικαθιστούµε στη διαφορική χρησιµοποιώντας επίσης τις συνοριακές τιµές u(0) = 1, u(1) = 0. Αν π.χ. µ = 0, προκύπτει ένα τριδιαγώνιο σύστηµα U U U 3 = 28 2 U 4 2. Ποιά είναι µια ελάχιστη συνθηκη που πρέπει να ικανοποιεί η άγνωστη συνάρτηση u για να επιτρέπει το σφάλµα διακριτοποίησης να είναι 2ης τάξης (ως προς την απόσταση των διαδοχικών σηµείων του πλέγµατος). Να είναι η 4η παράγωγος συνεχής (και άρα ϕραγµένη) στο κλειστό διάστηµα [0, 1]. Προκύπτει γιατί το σφάλµα διακριτοποίησης σε κάθε κόµβο του πλέγµατος είναι ανάλογο του h 2 u (IV ) (ˆx j ) για ˆx j κοντά στο x j. Εποµένως για διακριτοποίηση 2ης τάξης πρέπει να εξασφαλίζεται ότι η 4η παράγωγος είναι ϕραγµένη. 3. Αν χρησιµοποιούσαµε n κόµβους, τότε το κόστος επίλυσης του γραµµικού συστήµατος ϑα ήταν O(n κ ). Ποιό ϑα είναι το κ και γιατί; Επειδή το µητρώο είναι τριδιαγώνιο, το κόστος επίλυσης είναι O(n), δηλ. κ = 1. ΠΡΟΣΟΧΗ: Υπάρχουν εκδοχές των ερωτήσεων µε διαφορική εξίσωση του τύπου d2 u dx2(x) + (µ + 4)du(x) + u(x) = 1, για κάθε x [0, 1], dx και ερωτάστε αν µπορούµε να χρησιµοποιήσουµε παραγοντοποίηση Cholesky για την ε- πίλυση. Η απάντηση είναι ότι όχι γιατί το (τριδιαγώνιο) µητρώο που προκύπτει δεν είναι συµµετρικό. 4. Για τη διαφορική εξίσωση (αρχικών τιµών) dv dt (t) = Bv(t) όπου B = [102 µ, 1; 1, 102 µ], v = [v 1 (t), v 2 (t)] να υπολογίσετε πόσα τουλάχιστον ϐήµατα «εµπρός Euler» πρέπει να εκτελεστούν για να υπολογιστεί η λύση στο t = 4 χωρίς να παρουσιάζεται αστάθεια. Στην εµπρός Euler V (j+1) V (j) = tbv (j) όπου V (j) είναι η προσέγγιση του v(t j ). Εποµένως και άρα V (j+1) V (j) = tbv (j) V (j+1) = (I + tb)v (j) άρα ϑέλουµε το t να επιλεγεί έτσι ώστε οι ιδιοτιµές του (I + tb) να είναι κατά µέγιστο 1. Εποµένως ϑέλουµε t τέτοιο ώστε t min 2 λ. Αν π.χ. j µ = 0 υπολογίζουµε τις ιδιοτιµές του B και τις ϐρίσκουµε λ = { 101, 103} εποµένως ϑέτουµε t = εποµένως ϑα χρειαστούν τουλάχιστον = 206 ϐήµατα.
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (24 Φεβρ. 2008, 12-3µµ) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (24 Φεβρ. 2008, 12-3µµ) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1. α) Σ - Λ : Οι εντολές BLAS-2 µπορούν να υλοποιηθούν να έχουν καλύτερη επίδοση από τις BLAS-3. Απάντηση. Λάθος : Οι εντολές
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Επιστηµονικός Υπολογισµός Ι
Επιστηµονικός Υπολογισµός Ι Ενότητα 5 : Επίλυση Γραµµικών Συστηµάτων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Επιστηµονικός Υπολογισµός Ι 2η Εργαστηριακή Ασκηση
Επιστηµονικός Υπολογισµός Ι 2η Εργαστηριακή Ασκηση Ηµεροµηνία επιστροφής γιά πλήρη ϐαθµό : 12/12/11, 9 π.µ. Προσοχή: Μπορείτε να συζητήσετε την άσκηση µε συναδέλφους σας αλλά αν διαπιστωθεί αντιγραφή,
Πεπερασμένες Διαφορές.
Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Επίλυση Γραµµικών Συστηµάτων
Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n
Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss
Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( Ιουλίου 009 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ I. (εκδχ. Α. Σωστό ή Λάθος: α Αν A,B R n n είναι αντιστρέψιµα, τότε το ίδιο ισχύει και για το AB. ϐ Αν A R n n, τότε A AA. γ Αν A R και συµµετρικό
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση
Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50
Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205
Αριθµητική Ανάλυση 1 εκεµβρίου / 43
Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +
Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.
Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική
4.2 Μέθοδος Απαλοιφής του Gauss
4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών
Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε
Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές
Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)
Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas) Εστω το ακόλουθο n n τριδιαγώνιο γραµµικό σύστηµα Ax = d A = b 1 c 1 a 2 b 2 c 2 0 a 3 b 3 c
Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015
Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1
.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887
Ολοκλήρωση κατά Gauss Ενώ στους τύπους Newton-Cotes χρησιµοποιούσαµε τις τιµές της συνάρτησης σε ισαπέχοντα σηµεία, στους τύπους ολοκλήρωσης κατά Gauss τα σηµεία xj και τα βάρη wj επιλέγονται, έτσι ώστε
Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)
-- Αριθµητική Ανάλυση και Περιβ. Υλοποίησης Απαντήσεις στα Θέµατα Ιουνίου (3 και 4) Θέµα 3 [6µ] Θεωρούµε ότι κατά την επίλυση ενός προβλήµατος προσέγγισης προέκυψε ένα γραµµικό σύστηµα Αxb, µε αγνώστους,
Αριθµητική Ολοκλήρωση
Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί
Επιστηµονικός Υπολογισµός Ι Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων. Ευστράτιος Γαλλόπουλος
Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων Ευστράτιος Γαλλόπουλος Ασκηση 1 Εστω ένα µητρώο A το οποίο χρησιµοποιούµε και µητρώο συντελεστών κάποιου γραµµικού συστήµατος A x = b 1.Πώς ϑα λύνατε το γραµµικό
Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 3 : και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml
Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
[A I 3 ] [I 3 A 1 ].
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 9 (α) Να ϐρεθεί ο αντίστροφος του πίνακα A = 6 4 (ϐ) Εστω b, b, b στο R Να λύθεί το σύστηµα x = b 6x + x + x = b x
Επιστηµονικός Υπολογισµός Ι
Επιστηµονικός Υπολογισµός Ι Ενότητα 8 : Το ιακριτό Μοντέλο Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,
Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται
ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20
Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β
Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων
4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
5.1 Ιδιοτιµές και Ιδιοδιανύσµατα
Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει
ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).
ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους
τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n
1 Αριθµητική Γραµµική Άλγεβρα: Ασκήσεις
Αριθµητική Γραµµική Άλγεβρα: Ασκήσεις. Να επιλυθεί το σύστηµα µε απαλοιφή Gauss: 3x 2x 3 +x 4 = 2x + +x 3 +3x 4 = 6 x +3 +2x 3 +4x 4 = 2x 2 +3x 3 2x 4 = 7 [ΑΠΑΝΤΗΣΗ:x 4 = 0, =, x 3 = 3, x = 2] 2. Να επιλυθεί
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html ευτέρα 30 Μαρτίου 2015 Ασκηση 1. Να ϐρεθούν όλοι
Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU
Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x+ y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y
Παναγιώτης Ψαρράκος Αν. Καθηγητής
Ανάλυση Πινάκων Κεφάλαιο 2: Παραγοντοποίηση LU Παναγιώτης Ψαρράκος Αν Καθηγητής ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Τα κάτωθι προβλήµατα προέρχονται από τα κεφάλαια, και του συγγράµµατος «Γραµµική Άλγεβρα». Η ηµεροµηνία παράδοσης
Επιστηµονικός Υπολογισµός ΙΙ
Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 27/3/13 Μέθοδος ελαχίστου υπολοίπου (Minimum residual) Θέµα:
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 06, 26 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Η ανάλυση LU 2. Η ανάλυση LDM T και η ανάλυση LDL T 3. Συμμετρικοί
Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ
Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Παραγώγιση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 21 εκεµβρίου 2015 ιδάσκοντες:τµήµα Α ( Αρτιοι)
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν
Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 19 εκεµβρίου 2015 Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί
Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ.
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 11/5/2012 Σηµαντικό χαρακτηριστικό µέγεθος (ϐαθµωτός) για κάθε τετραγωνικό
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης
Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών
Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις
Επιστηµονικός Υπολογισµός Ι εύτερη εργαστηριακή άσκηση
Επιστηµονικός Υπολογισµός Ι εύτερη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 29/12/2010 26 Νοεµβρίου 2010 Με fl (x) συµβολίζεται (όπως και στις σηµειώσεις του µαθήµατος) η αναπαράσταση σε αριθµητική
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση
Κεφάλαιο 3 Πρόβλημα δύο σημείων Σε αυτό το κεφάλαιο θα μελετήσουμε τη μεθόδο πεπερασμένων διαφορών για προβλήματα Σ.Δ.Ε. δεύτερης τάξεως, τα οποία καλούνται και προβλήματα δύο σημείων. Ο λόγος που θα ασχοληθούμε
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].
4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.
15 εκεµβρίου εκεµβρίου / 64
15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).
2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5
IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Ιανουάριος-Φεβρουάριος 7 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυχία! Θέµα ο α Χρησιµοποιείστε
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Τριγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 7 2 Τριγωνοποίηση 21 Ανω Τριγωνικοί Πίνακες και
x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 008-9 ΛΥΣΕΙΣ = 1 (Ι) Να ϐρεθεί ο αντίστροφος του πίνακα 6 40 1 0 A 4 1 1 1 (ΙΙ) Εστω b 1, b, b 3 στο R Να λύθεί το σύστηµα x = b 1 x 1 + 4x + x 3 = b x 1 + x + x
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου
Ιδιότητες. Σχετικά µετο. είναι το αντίστροφο τουαβ ΑΒ; Ποιό. Προσοχή. Αντίστοιχα µε τους βαθµωτούς: αρκεί αβ 0 ισχύει (A+B) ισχύουν όµως
Ιδιότητες Ποιό είναι το αντίστροφο τουαβ ΑΒ; Αντίστοιχα µε τους βαθµωτούς: (αβ) -1 = β -1 α -1 αρκεί αβ 0 ισχύει (ΑΒ) -1 = B -1 A -1 αρκεί να υπάρχουν τα A -1, B -1 Προσοχή υπάρχει µια διαφορά ποιά; Σχετικά
Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα)
Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα) ιδάσκων: Επίκ Καθηγητής ΦΤζαφέρης 14 Μαρτίου 2019 ιδάσκων: Επίκ Καθηγητής ΦΤζαφέρης Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα) 14 Μαρτίου
Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan
Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jodan Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y 6 με απαλοιφή Gauss. Ο επαυξημένος πίνακας του συστήματος
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml
Διανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai217/lai217html Παρασκευή 17 Νοεµβρίου 217 Ασκηση
Άσκηση 1. i) ============================================================== Α n ( 3 n 1 ) A ) 5 4. Α n 1 2 ( n n 2.
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6995 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /
Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ
Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)
Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,
Αριθµητική Ανάλυση Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 1 / 36 Αριθµητική Παραγώγιση
Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange
64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j
Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του
Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται